Directional Solidification Microstructure of a Ni-Based Superalloy: Influence of a Weak Transverse Magnetic Field
نویسندگان
چکیده
A Ni-based superalloy CMSX-6 was directionally solidified at various drawing speeds (5–20 μm·s−1) and diameters (4 mm, 12 mm) under a 0.5 T weak transverse magnetic field. The results show that the application of a weak transverse magnetic field significantly modified the solidification microstructure. It was found that if the drawing speed was lower than 10 μm·s−1, the magnetic field caused extensive macro-segregation in the mushy zone, and a change in the mushy zone length. The magnetic field significantly decreases the size of γ’ and the content of γ-γ’ eutectic. The formation of macro-segregation under a weak magnetic field was attributed to the interdendritic solute transport driven by the thermoelectric magnetic convection (TEMC). The γ’ phase refinement could be attributed to a decrease in nucleation activation energy owing to the magnetic field during solid phase transformation. The change of element segregation is responsible for the content decrease of γ-γ’ eutectic.
منابع مشابه
Effect of a weak transverse magnetic field on the microstructure in directionally solidified peritectic alloys
Effect of a weak transverse magnetic field on the microstructures in directionally solidified Fe-Ni and Pb-Bi peritectic alloys has been investigated experimentally. The results indicate that the magnetic field can induce the formation of banded and island-like structures and refine the primary phase in peritectic alloys. The above results are enhanced with increasing magnetic field. Furthermor...
متن کاملSimulation of Creep Crack Growth of a Directionally-solidified Ni-base Superalloy
Creep lifetime of turbine blade material subjected to sustained centrifugal forces at elevated temperatures is limited by accumulated inelastic deformation and creep crack growth (CCG). Creep resistance exhibited in conventionally cast polycrystalline (PC) Ni-base superalloy components has been enhanced via solidification techniques. Directional solidification (DS) results in large grain sizes ...
متن کاملON THE FORMATION OF STRAY GRAINS IN DIRECTIONALLY-SOLIDIFIED NI-BASED SUPERALLOYS WITH VARYING CROSS SECTIONS
Formation of stray grain defects particularly around re-entrant features of the turbine blade airfoils is one of the major problems in directional and single crystal solidification processes. In this work, directional solidification tests of the GTD-111 Ni-based superalloy were conducted at different withdrawal velocities of 3, 6 and 9 mm.min-1 using various stepped cylindrical and cubic design...
متن کاملEvaluating the Effect of Ta/W Ratio on Microstructure and Stress Rupture Properties of Ni-Based Single Crystal Superalloy PWA1483
In this study, the effect of Ta/W ratio on the microstructure and stress rupture properties of Ni-based single crystal (SX) superalloy PWA1483 was investigated. For this purpose, single crystal (SX) superalloys with different Ta/W ratios (0.75, 1.0, 1.32 and 1.5 in wt.%) were fabricated. The alloys were directionally solidified by Bridgman method under the same solidification condition at withd...
متن کاملSimulation and Experimental Studies on Grain Selection and Structure Design of the Spiral Selector for Casting Single Crystal Ni-Based Superalloy
Grain selection is an important process in single crystal turbine blades manufacturing. Selector structure is a control factor of grain selection, as well as directional solidification (DS). In this study, the grain selection and structure design of the spiral selector were investigated through experimentation and simulation. A heat transfer model and a 3D microstructure growth model were estab...
متن کامل